Asymptotics of posteriors for binary branching processes

نویسندگان

  • DIDIER PIAU
  • Didier Piau
چکیده

We compute the posterior distributions of the initial population and parameter of binary branching processes, in the limit of a large number of generations. We compare this Bayesian procedure with a more näıve one, based on hitting times of some random walks. In both cases, central limit theorems are available, with explicit variances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotics for the survival probability in a killed branching random walk

Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope γ − ε, where γ denotes the asymptotic speed of the right-most position in the branching random walk. Under mild general assumptions upon the distribution of the branching random walk, we pro...

متن کامل

Asymptotics for the survival probability in a supercritical branching random walk

Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope γ − ε, where γ denotes the asymptotic speed of the right-most position in the branching random walk. Under mild general assumptions upon the distribution of the branching random walk, we pro...

متن کامل

Random trees for analysis of algorithms

2 Binary search trees 2 2.1 Definition of a binary search tree . . . . . . . . . . . . . . . . . . 2 2.2 Profile. Discrete martingale . . . . . . . . . . . . . . . . . . . . . 3 2.3 Embedding in continuous time. Yule tree . . . . . . . . . . . . . . 4 2.4 Martingale connection Yule tree binary search tree . . . . . . . . 5 2.5 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Limit Laws of Estimators for Critical Multi - Type Galton – Watson Processes

We consider the asymptotics of various estimators based on a large sample of branching trees from a critical multi-type Galton– Watson process, as the sample size increases to infinity. The asymp-totics of additive functions of trees, such as sizes of trees and frequencies of types within trees, a higher-order asymptotic of the " relative frequency " estimator of the left eigenvector of the mea...

متن کامل

Asymptotics of Posteriors and Model Selection

CHAPTER 4. ASYMPTOTICS OF POSTERIORS AND MODEL SELECTION 4.1 Consistency of posteriors. Given a measurable family {P θ , θ ∈ Θ}, dominated by a σ-finite measure v, for a measurable space (Θ, T), a prior π on Θ, and observations X 1 , X 2 ,. .. i.i.d. (P θ 0) for some θ 0 ∈ Θ, we have posteriors π x,n on Θ where x = (X 1 ,. .. , X n) for each n. Recall that we have defined the posteriors by mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008